31

Second Semester MCA Degree Examination, December 2010 **Operations Research**

Time: 3 hrs.

Max. Marks:100

Note: Answer any FIVE full questions.

- a. List the different phases involved in OR study and hence explain any two different phases of 1 (10 Marks) OR study.
 - b. A furniture manufacturing company plans to make two products: chairs and tables from its available resources, which consist of 400 board feet of mahogany timber and 450 man hours. It knows that, to make a chair, it requires 5 board feet and 10 man-hours and yields a profit of Rs.45; while each table uses 20 board feet and 15 man-hours and has a profit of Rs.80. The problem is to determine how many chairs and tables the company can make, keeping within, its resource constraints so that it maximizes its profit. Formulate a LP model for this (10 Marks) problem.
- Solve the following LPP by graphical method: 2

Maximize, z = 60x + 50y,

subject to the constraints, $x + 2y \le 40$; $3x + 2y \le 60$ and $x, y \ge 0$.

(10 Marks)

b. Explain in detail the special cases of graphical method.

(10 Marks)

Write a procedure to solve LPP by two-phase simplex method. 3 i) a.

Define optimal solution and unrestricted variable.

(10 Marks)

b. Solve the following LPP by Charne's big M method:

Minimize, $z = 60x_1 + 80x_2$

Subject to, $x_2 \ge 200$; $x_1 \le 400$; $x_1 + x_2 = 500$ and $x_1, x_2 \ge 0$

(10 Marks)

- Define: i) Slack variable 4
- ii) Surplus variable
- iii) Feasible solution
- iv) Standard form of LPP

(10 Marks)

- b. Use simplex method to maximize, z = 5x + 8y subject to constraints $4x + 6y \le 24$, (10 Marks) $2x + y \le 18$, $3x + 9y \le 36$ and $x, y \ge 0$.
- Use the revised simplex method to solve the following problem: 5

Maximize, $z = x_1 + 2x_2$,

subject to $x_1 + x_2 \le 3$, $x_1 + 2x_2 \le 5$, $3x_1 + x_2 \le 6$ and $x_1, x_2 \ge 0$.

(15 Marks)

b. Explain the role of duality in sensitivity analysis.

(05 Marks)

Solve the following transportation problem and find the optimal solution (obtain the initial 6 (10 Marks) solution by VAM):

	X	Y	Z	Available
Α	8	7	3	60
В	3	8	9	70
C	11	3	5	80
_ , '	50	00	0Λ	-

Requirement

6 b. Find the assignment of trucks from cities in surplus to cities in deficit so that total distance covered by vehicles is minimum:

(10 Marks)

	1	2	3	4	5	6
Α	12	10	15	22	18	8
В	10	18	25	15	16	12
C	11	10	3	8	5	9
D	6	14	10	13	13	12
E	8	12	11	7	13	10

- 7 a. Define: i) Mixed strategy
 - ii) Optimal strategy
 - iii) Zero sum game.

(06 Marks)

b. Define metaheuristics. Write the nature of metaheuristics.

(07 Marks)

c. What is Tabu search? Explain how the Tabu search is conducted.

(07 Marks)

8 a. Reduce the following game by dominance property and find the game value:

(10 Marks)

Player B II III IV 4 0 2 II 4 Player A 0 III 4 4 IV 0 0

b. Obtain optimal strategies (for both persons) and the value of the game for zero sum two person game whose pay off matrix is:

(10 Marks)

	В		
	1	-3	
	3	5	
٨	-1	6	
-1	4	1	
	2	2	
	-5	0	

* * * * *